

Coco Sleuth3

Program Analysis and Debugging Tool

by Edgar M. (Bud) Pass, Ph.D.

Original Copyright (c) 1983 by
Computer Systems Consultants, Inc.

1454 Latta Lane, Conyers, GA. 30207
Telephone Number 404-483-1717/4570

(moved to Public Domain)

With Updates for OS9 Level 2 1990-1995
M. E. (Gene) Heskett
291 Garton Avenue
Weston, WV 26452

Updates for NitrOS9 Level 2 2016

Bill Pierce
570 Sandy Bend Rd.

Rocky Point, NC 28457
ooogalapasooo@aol.com

Copyright Notice

This manual and any accompanying materials described by this manual
are copyrighted and should not be reproduced in any form, except as
described here, without prior written consent of an officer of Computer
Systems Consultants, Inc. The accompanying diskette may be duplicated
for backup purposes by the original license purchaser. Protecting the
software from unauthorized use will protect your access to new good
software in the future. Programs such as Coco Sleuth3 would cost each
user many hours or many thousands of dollars to develop individually.
They may be priced so low only because of the expected large volume of
sales. So let your friends pay for their software too!

Limited Warranty Statement

Computer Systems Consultants, Inc., and it's agents, makes no express
or implied warranties concerning the applicability of Coco Sleuth3 to a
particular purpose. Liability is limited to the original license cost. This
warranty is presented expressly in lieu of all other warranties, expressed
or implied, including those of merchantability and fitness for use and of
all other obligations on the part of Computer Systems Consultants, Inc.
and it's agents.

Problems and Improvements

Users are encouraged to submit problems and to suggest or to provide
improvements for Coco Sleuth3. Such input will be processed on a best
effort basis. Computer Systems Consultants reserves the right to make
program corrections or improvements on an individual or wholesale
basis, as required. The company is under no obligation to provide
corrections or improvements to all users of Coco Sleuth3. In the case of
specific situations requiring extensions to Coco Sleuth3 or major
assistance in it's use, consulting on a pre-arranged, for-free basis.

Table Of Contents

I. Overview of Coco Sleuth3
II. Sleuth3--Disassembler/File Editor

A. Getting Started
B. General Operating Notes
C. Commands

1. Address Range Commands
2. Mode Commands
3. Operation Commands
4. Miscellaneous Commands

D. Object t Code Dump & Screen Editor
E. Disk Files Used by Sleuth3

III. Chngnam3--Name Changer
A. Getting Started
B. Disk Files Used
C. Operating Hints

IV. XRef3--Cross Reference Generator
A. Getting Started
B. Disk Files Used
C. Operating Hints

V. Adapting Sleuth3, Chngnam3, and XRef3 to Your System
VI. Sleuth3 Command Summary

Coco Sleuth3--An Overview

 Coco Sleuth3 is a collection of three programs which enables the user to
examine and/or modify binary program files on disk or in memory, on
Tandy TRS-80 Color or TDP-100 or similar computers, with at least 32k
bytes of memory and at least one disk drive.

 Programs may be disassembled into source code format and the source
may be displayed, printed, or saved on disk. Labels produced by Sleuth3
may be changed globally to labels of your own preference. Cross
reference listings of labels may be produced to aid in debugging or
modifying the program. Programs in ROM or on disk may be "altered"
with the altered program being saved on a disk file; the resultant file
could then be used to program a new ROM, ect.

 The three programs are named Sleuth3, Chngnam3, and XRef3. These
are the Disassembler, Name-Changer, and Label Cross Reference
generator, respectively. The programs are supplied as 6809 object files
for the Tandy Color or TDP-100 or similar computers. The processors
which may be analyzed are 6800, 6801, 6803, 6805, 6808, 6809, and
6502.

NOTE: This copy of the “Coco Sleuth3” manual was hand copied from

the original “Coco Sleuth” manual for RSDOS. It is being distributed

with the OS-9 version of “Coco Sleuth3” since no copies of the OS9-9

version of the “Coco Sleuth” manual or the RSDOS vesion of the “Coco

Sleuth” program can be found.

Several edits may or may not appear in order to change the RSDOS

loading and running instructions to match the OS-9 instructions. The

instructions for the actuall program operations are exactly the same in

both versions of “Coco Sleuth”. If you find any mis-spellings or

incorrect text, chalk it up to “too many late nights typing from a bad

PDF scan of the original manual”.

This edition of “Coco Sleuth3” has been released to “Public Domain”

by “Edgar M. (Bud) Pass” (original author). The original source code

was modified by myself and Gene Heskett (see “Gene’s Notes.txt”) to

faciliate use with NitrOS9 Level 2 from it’s original OS-9 Level 1 status.

Conditional code is provided to allow Sleuth3 to be compiled for use

with NitrOS9 Level 1 as well. The name of the program has been

changed to “Sleuth3” to distinguish it from the original.

Several disassemblies of OS-9 modules were made to make sure Sleuth3

would disassemble the modules to match the original sources of the

modules. No problems were found, how ever, Sleuth3 does have a couple

of “quirks” in it’s disassembly. These are listed below:

psh-pul display: When disassembling a “pshs”, “puls”, “pshu”, or

“pulu” instruction, Sleuth3 will list the register names in reverse order

from standard OS-9 convention. The OS-9 standard is to display the

registers in order from low to high (with the exception of the “pc” reg

as it is always last). Example:

pshs cc,a,b,x,y,u,pc

Sleuth3 displays this as:

pshs pc,u,y,x,b,a,cc

In consulting the OS-9 programming manual, the manual states that the

order of the registers do not matter and that the assembler will place

then in the needed order during assembly, so this should not be a

concern. Assemblers other than the standard OS-9 “asm” assembler

may differ in this respect.

Another quirk is the module header naming convention. The names used

by Sleuth3 in the creation of the module header code is slightly different

from standard OS-9 naming convention, but the resulting sources will

compile properly using the Sleuth3 naming convention.

Bill Pierce

Sleuth3--A Disassembler/File Editor

 This program is the "work-horse" of the Coco Sleuth3 package. Some
of the functions of the program include the following:

1. Disassemble a program from a disk file and write the source to
another disk file.

2. Disassemble a program in memory and write the source to a disk
file.

3. Dump the object code of a binary file in memory-dump format and
allow modifications to the file. The modified file can then be
written back to disk.

4. Dump the object code from memory, allow modifications, and
write modified program to disk.

 In all the above cases, any modifications made by the user do not
actually change the original object code. Rather the changes are stored in
a table and overlaid into the original code when the output file is written
to disk. In the case of operating on files from disk, the object program is
never actually loaded into memory. Instead, tables are set up in memory
describing various aspects of the program and the file is read, one sector
at a time, as needed. These tables are used to build the display when an
object dump or disassembly is performed. The net effect of this is that
the original program, either on disk or in memory, is undisturbed. This
means that the operating system code can be analyzed and "changed."

 Once a program is loaded, it is usually necessary to classify all parts of
the program according to usage. That is, each byte must be identified as
data, variable, text, instruction, ect. This is so that when a disassembly is
performed, the source code generated will correctly represent the
program as it was originally written. Commands are included in Sleuth3
to classify memory. Once memory has been classified as to usage, the
object code dump will indicate how each byte has been dedicated.

 If the program is being modified, a screen edit capability is included to
make the changes easier. The program is loaded and an object code
dump is made of the sections where changes are necessary. The screen-
edit mode is then entered and the cursor positioned to the location that
needs to be changed. The new value is entered at the cursor location and
is recorded. Any or all of up to 256 bytes within a given dump may be
changed while in the screen-edit mode. If the cursor is in the
hexadecimal area of the dump, the new values are entered in hex. If the
cursor is positioned in the ASCII area of the dump, the new values are
entered as ASCII characters.

 Since the process of classifying all portions of a large program can be
very tedious and time consuming, provision is made for storing all
descriptive information about the program in a disk file. If it necessary
to run Sleuth3 several times (quite likely when working on large
programs such as “ShellPlus”), it is not necessary to reenter the various
data or variable areas each time. They can be recalled immediately from
the parameter file on disk.

 In order to take advantage of position-independent coding which is
supported by the 6809 microprocessor (and required by OS-9), a
6801/2/3/8/9 program processed by this system may be converted into
position-independent source by setting the "6809 position-independence
switch." Some careful checking must be done after this conversion to
verify that the 6809 instructions are addressing data correctly. Some
manual changes will usually be necessary to complete the conversion.

 Very large programs or other system programs, generate source which
is quite long--sometimes too long to fit on the disk. To accommodate
this problem, source programs can be broken up into several parts or
"segmented." This is accomplished by first by classifying the entire
program as described above. Several trial disassemblies will, no doubt,
be necessary to verify that all of the program has been classified
properly. Once you are satisfied, new disassembly limits may be
specified such that you are now only disassembling part of the program.

Each segment can be written to a disk file. By changing the disassembly
limits, the entire program can be disassembled into source segments of
manageable size. Each segment will have all the necessary equates to
link it to the other segments.

 When a program is disassembled by Sleuth3, it is very possible that not
all the equates generated will appear in the same part of the listing. The
source listing is output with all component parts in memory-address
order. Consequently, low address equates will appear first in the listing
while high address equates (most system and I/O calls) will appear at or
near the end of the program. After the source has been written to disk, a
text editor with block-move capability can be used to group the equates.

 Labels generated by Sleuth3 will be of the form "Z[address]". This
means that all the labels will start with a "Z" followed by a 4-digit hex
number which represents the address at which the label was defined. If
the program has been disassembled properly, when reassembled on the
same type processor, all the labels should assemble at their
corresponding addresses. This may vary however, when working with
6809 code. Not all the 6809 assemblers follow the same rules for
defining the offset used with PC-relative addressing. Some assemblers
may force a 16-bit offset when an 8-bit offset was used in the original
code. This will cause a slight displacement of labels in the reassembled
program and the displacement will increase as the program is processed.
This problem can be alleviated by setting the Cross-Assembler flag "on"
(see "B" command.) This combination should produce the correct length
PCR code.

GETTING STARTED

 Insert the disk containing the file Sleuth3 into the drive assigned as the
default drive (normally “/d0”) and copy Sleuth3 to the CMDS directory
of your work disk or hard drive system. Example:

Copy /d0/cmds/sleuth3 /dd/cmds/sleuth3

 Then, enter

tmode pau=1

This will make listing readable instead of just scrolling by too fast to
read. To run Sleuth3, you type:

Sleuth3 #20k

This should give Sleuth3 enough ram to load most modules. If you find
Sleuth3 is running out of memory on larger modules, then more memory
can be assigned. A title and heading will be displayed. The system
prompt "?" is then displayed, indicating that the system is ready to
accept commands from the keyboard. For a list of commands (MENU),
enter a "?" from the keyboard.

 If you plan to use input or output disk files, insert the appropriate
diskette into a disk drive. The disk containing Sleuth3 may be removed
as it is no longer required. You are now ready to proceed with the
operating session.

GENERAL NOTES ON OPERATION OF Sleuth3

 At any time Sleuth3 is waiting for input from the keyboard, hitting
BREAK will abort the operation in progress and return to the "?"
prompt. At any time a non-hexadecimal number is entered when Sleuth3
is expecting a hexadecimal number, the current operation is aborted and
the "?" prompt is displayed.

 The operation of the space bar while in Sleuth3 is somewhat different
from normal Coco operations. When Sleuth3 is outputting to the screen
or printer, hitting the space bar will stop output temporarily. However,
the operation of the break key after using the space bar varies, depending
on the operation in progress. If you are doing a disassembly using the
"D" command and no output file is used, hitting return terminates the
operation and displays the "?" prompt. If an output file is in use while
concurrently outputting to the screen and/or printer, hitting return will
terminate the screen or printer output, but the disk output will continue.
Once this has been done, the output to the screen or printer cannot be
restarted until the disassembly is completed. In all other operations in
Sleuth3, hitting return has the same effect as hitting the space bar a
second time. If you want to terminate an operation, hit the break key
until the operation is terminated; because of the unbuffered nature of the
keyboard on the Coco, this will normally require several attempts.

 During certain operations in Sleuth3, there may be times when nothing
seems to be happening and the machine seems to have "died". This
happens during a disassembly or when writing a new object file and a
large section of "ignored: code is encountered. (See the "K" and "R"
commands for information on ignored code). When this happens, and
you think the system is "hung", wait at least five minutes before
attempting any corrective action.

Sleuth3 COMMANDS

 The Disassembler Command set is divided into the following four
categories:

• Address Range Commands

• Mode Commands

• Operation Commands

• Miscellaneous Commands

 Address range commands are used to classify memory as described in
the overview or to change the disassembly range. Each command of this
type will prompt for a starting and ending address. Thus a single byte or
a group of bytes may be classified with one command. Mode commands
are used to change the operating mode of Sleuth3. There are four
different mode switching commands. Operation commands initiate some
major operation, such as disassembling a program, executing an object
code dump, making changes to the program, simulating a RESET
operation, ect. Each of the commands will now be discussed in detail.

ADDRESS RANGE COMMANDS

 Note--These commands can be used in any order, at any time that the
"?" prompt is displayed. Each command will define one address range
(Start-End) per use. Address range entries are terminated with a
<return>. Any given address may be classified more than once. In this
case, the Last classification entered for a particular byte or address range
is the one that will be used by the disassembler.

A--set FDB Address Range

 This command is used to define sections of code containing two-byte
data items. These are usually 16-bit addresses in a table. Each FDB
defined by this command will be assigned a label by Sleuth3. In 6502
mode, the 2-byte pairs will be reversed in sequence. Each byte within a
specified FDB range will be indicated in an object code dump by placing
the symbol "l" immediately after the hex value.

C--set FCC Address Range

 This command is used to define sections of code containing text or
ASCII data. Any code within the specified range which does not have an
ASCII equivalent will automatically be marked as FCB's. Each byte
within a specified FCC range will be indicated in an object code dump
by placing the symbol "#" immediately after the hex value.

H--set FCB Address Range

 This command is used to define sections of code which are used to store
single byte hex data. Each byte within a specified FCB range will be
indicated in an object code dump by placing the symbol "(" immediately
after the hex value.

I--set INSTRUCTION Address Range

 This command is used to identify sections of code which contain
program instructions. This is the default classification for all of memory.
Each byte within a specified INSTRUCTION range will be indicated in

an object code dump by placing the symbol ")" immediately after the
hex value.

J--set INSTRUCTION & ASCII Range

 This command is very similar to the "I" command with the difference
that when a disassembly is performed, code marked with the "J"
command will have the ASCII character equivalent of each byte of the
instruction displayed to the right of the instruction. Each byte of code
marked with the "J" command will be displayed in an object code dump
by placing the symbol "*" immediately after the hex value.

K--set IGNORED Address Range

 Frequently, an object program to be analyzed will contain more than
one contiguous segment of code. These segments may be in completely
different areas of memory. It is desirable to have Sleuth3 "ignore"
anything between segments. When disassembling from disk, any address
range not defined but between the start and end addresses are implicitly
ignored by Sleuth3. The "K" command marks sections of memory which
should be IGNORED by Sleuth3. Bytes marked by the "K" command
are indicated in an object code dump by placing the symbol "+"
immediately after the hex value.

R--set RMB Address Range

 Frequently, an object program to be analyzed will contain more than
one contiguous segment of code and may contain logically reserved
areas of memory not represented by the binary object file. It is desirable
to have Sleuth3 "ignore" anything between segments of code, yet it is
desirable to be able to define these areas as RMB areas so that Sleuth3
will output a better representation of the program. Values of bytes found
in RMB areas are ignored. Bytes marked by the "R" command are
indicated in an object code dump by placing the symbol """ immediately
after the hex value.

MODE COMMANDS

 These commands are used to change the operating modes of Sleuth3.
The current operating mode can be determined by using the "L"
command described later in this manual.

B--Flip Cross-Assembler Switch

 The disassembled code for the 6502 and 6805 options is oriented
toward a 6809 macro assembler, rather than a 6502 or 6805 assembler.
This is for the convenience of those who wish to do program
development work for the 6502 or 6805 on a 6809. (Computer Systems
Consultants markets cross-assembly macro sets for the 6800,6801,6805,
and 6502 which run on a 6809 macro assembler.) When the "B" option
of Sleuth3 is turned on, page zero addresses for 6800, 6801, 6805, and
6502 are indicated by the use of "<" prefixing the operand and extended
addresses are indicated by ">" prefixing the operand. For the 6805 or
6809, eight-bit index offsets are indicated by "<" prefixing the operand
while the sixteen-bit offsets are indicated by ">" prefixing the operand.

E--Flip Separate Label Switch

 Many programmers prefer to assign the labels as an equate to the
current program counter value rather than associate the label with a
program instruction (e.g. LABEL EQU *). If the "E" switch is on, all
program labels produced by Sleuth3 will be equated to the current pc
value. If the "E" option switch is off, labels will be assigned to the
current program instruction whenever possible.

P--Flip 6809 Position-Independence Switch

 The "P" command is use to assist in the production of 6809 Position-
Independent code. It makes the following changes in the output text:

1. All extended and direct addressing references to addresses
within the program area are changed to program-counter-
relative by adding ",PCR" after the operand.

2. All three-byte immediate instructions are changed to the
corresponding PCR LEA instruction.

You must make the following changes to complete the conversion:

1. All references to FDB's within the program must be rewritten to
be relocatable, perhaps through the use of program-counter-
relative LEA instructions.

2. All old immediate and new LEA instructions must be reviewed
to insure that the correct values are still loaded into various
registers.

3. All out-of-program references must be reviewed to insure that
they refer to truly constant addresses and not simply to program
variable storage areas, which should be changed to PCR within
the program.

 6800/1/3/8 code may be converted to 6809 position-independent code in
a similar manner but the resultant code must be checked very carefully
to ensure the program logic has not been changed. 6805 and 6502 object
code may not be processed in this manner. Any attempt to do so will be
ignored.

Z--set Processor Type

 The "Z" command specifies for which processor the current input file is
written. The "Z" command will prompt for one of five choices. A "0"
selects 6800, 6802, or 6808. A "1" selects 6801 or 6803. A "2" selects
6502. A "5" selects 6805. A "9" selects 6809. The default processor
selected will be 6809

OPERATIONAL COMMANDS

These commands perform specific operations on memory or the input
file.

D--Disassemble Program

 The "D" command initiates the disassembly process. The user is asked
for an output file name. If none is desired hit the return key. The
following prompt will appear:

 P(printer),B(both),T(terminal),N(none)

 The "P" subcommand causes disassembler output to be sent to the
printer. The "T" subcommand causes the output to be sent to the screen,
while the "B" subcommand does both. If no output disk file is specified,
the "N" subcommand causes the output to be sent to the screen. If an
output file is used, the "N" subcommand will suppress the display of
Sleuth3 output. If an output file has been specified, Sleuth3 will prompt
for a title and assembler options. If a message of the form "TABLE
OVERFLOW" appears, the input file has too many labels to process and
must be redefined for smaller ranges of addresses and processed in parts.

F--Exit Coco Sleuth3

 The "F" command terminates the current operation, closes any open
files, and prepares for a RESET operation. It must be followed with a
return. If you desire to save the current operating parameters or update
the working file, these operations must be performed BEFORE the "F"
command is used. Once the "F" is typed, all current parameters and
work file are lost.

M--Examine and/or Change Program Code

 The “M” command operates in a similar manner to the memory change
function of most system monitors. The user is prompted for a starting
address. The address entered is displayed followed by the hex value of
the current contents of that location. To change the value, enter the new

2-digit hex value. The next memory location will then be displayed.
Hitting any character except “^” or return or a valid hex digit causes the
next sequential location to be displayed. Entering “^” causes the
previous memory location to be displayed. Return terminates the
examine/change mode.

Q--Object Code Display (Dump)
 The “Q” command is used to invoke the object code display function. If
an input file has been specified with the “S” (described later) command,
the first 128 bytes of the input file will be displayed. If no input file has
been specified, then a disassembly range must first be entered with the
“N” command. More details on the use of the Object Code Dump are
provided later.

T--Fill Program Code with a Specified Byte
 This command will cause the specified byte to replace every byte within
the address range specified. You will be prompted for starting address,
ending address, and the byte you want to insert.

U--Display Directory of a Mounted Diskette
 This command allows the display of the directory of a mounted diskette
while still in Sleuth3. Either a drive number or return must be entered. If
return is entered, drive zero is assumed.

V--View Object Code and Perform Absolute Disassembly
 The “V” command will perform and absolute disassembly of the object
code within the disassembly limits previously established. No labels are
generated. All relative address instructions are resolved to absolute
addresses. This provides a quick method of examining a section of code
without doing a formal disassembly of the entire program. Memory
classification is supported by the “V” command.

W--Write Modified Binary File to Disk
 This command causes a new Coco binary file to be written to the disk.
All changes made up to this point will be inserted into the file as it is

written, and all multiple byte definitions are resolved. The name of the
output file is requested prior to writing the file. “W” also displays a
memory map on the screen for the object file being written.

Y--Find Hexadecimal String in Program Code
 This command finds all occurrences of a string up to 31 hex bytes
within the current disassembly limits. The user is prompted for the
search limits (start and end addresses) and the hex string for which to
search. The hex string must be entered as continuous pairs of hex digits
with no spaces intervening (e.g. 23DB2390A4). The starting address of
all occurrences of the string are displayed on the screen.

MISCELLANEOUS COMMANDS

G--Specify Auxiliary Parameter File (Input or Output)
 When the “G” command is entered, the program will prompt for an
input file name. If only return is entered, the program will prompt for an
output file name. The parameter file is used to store information on the
current operating mode, input file name, classification of memory, and
other operating parameters. As described earlier, it is sometimes
necessary to repeat the memory classification and trial disassembly
process several times before the disassembly comes out correctly. To
avoid retyping the various memory classification commands each time,
use the “G” command to save everything up to this point. Once the
parameters have been saved, you may return to the exact point after
restarting using the “G” command to retrieve the parameters previously
saved.

L--List Current Control Information
 The “L” command displays the current operating mode, disassembly
limits, offset load values, and all memory classification ranges and types
currently in effect. It also shows the memory changes that have been
made with the “M”, “Q”, and “T” commands.

N--Set New Disassembly Range
 This command defines the range of code that will be disassembled
when the certain commands are used. The “N” command prompts for
start and end addresses and for a transfer address. If no transfer address
is desired, enter “FFFF”.

O--Set Offset Load Value
 The “O” provides an offset value which is added to each address in the
program being processed. If the program is being processed from disk,
the offset value is applied when the input file is loaded. If the program is
being processed from main memory, the offset value may be changed as
often as desired, since the offset value is applied during the actual
process of acquiring data from memory.

S--Specify New Input File and do Partial Restart
 The “S” command prompts for the file name of an input file to be used
by Sleuth3. The file must be a Coco binary type of file. Any address
range commands, separate-label switch, or position-independence switch
settings previously in effect are cleared. The previous operating mode
and address offset are preserved. If an input file is specified, the disk
may not be removed until another “S” command is entered or Sleuth3 is
terminated.

X--Specify New Transfer Address
 The “X” command changes the transfer address or adds a transfer
address to a file which previously did not have one. The transfer address
is the initial program execution address.

OBJECT CODE DUMP AND SCREEN EDIT FUNCTIONS

 The object code dump provides a “window” through which you can
view a portion of memory or an object program in a convenient display
format. For the Coco, this window consists of 16 lines of 8 bytes per line
for a total of 128 bytes of code; special versions of Sleuth3 are available
from CSC for smaller and larger displays.

 If an input file has been specified, anything outside the disassembly
limits will show as zeros. If an input file has not been specified, the
current contents of memory will be displayed incorporating any changes
made. As indicated previously, object code on disk or in memory is not
actually changed, but the object code dump will show the changes
entered.

 After each byte in the hexadecimal display, there is a symbol indicating
the classification of that byte. In the legend in the right margin of the
display is a table showing these symbols and the command used to
perform the classification. The current disassembly limits are displayed
in the upper right corner of the display while a list of available
commands is in the lower right corner.

SUB-COMMANDS

N--Display Next Page of Memory or File
 This sub-command causes the next page of memory or the input file to
be displayed. Hitting the return key will cause the same operation If the
next page is outside of the disassembly range, the “Q” command
terminates.

P--Display Previous Page of Memory or File
 This sub-command causes the preceding page of memory or input file
to be displayed. If the next page is outside of the disassembly range, the
next page will be displayed.

(Hex Byte)--Display a Specified Page of Memory or File
 If a two-digit hexadecimal value is entered, the corresponding page of
memory will be displayed. For instance, if “4E” is entered, the page of
memory at $4E00 will be displayed. The hex value entered should be
within the disassembly limits. After using a hex-byte address, the “N”,
“P”, and “S” sub-commands may be used as desired. If the requested
page is outside the disassembly range, the next page will be displayed.

Q--Quit and Return to Main Command Mode
 The “Q” sub-command returns control to the Sleuth3 main command
interpreter. If the next page is outside of the disassembly range, control
is also returned to the Sleuth3 command interpreter.

S--Full Screen Edit Mode
 The “S” sub-command place the object code dump into a full screen
edit mode of operation. The cursor will be positioned on the first nibble
(digit) of the first byte in the upper left corner of the hex display. At this
point, the cursor may be moved, using the cursor control keys you have
defined, to any point within the hex or ASCII display fields. Note that
the cursor will always point to valid data and cannot be moved outside
the hex or ASCII display fields. Also the cursor will never point to a
space between data. When the cursor has been positioned to the desired
location, simply type the desired new data. If the cursor is in the hex
display field, enter one or both nibbles of the new value, depending on
whether the cursor is pointing to the first or second nibble of the hex
byte. If the cursor is in the ASCII field, enter an ASCII character. Any or
all bytes within the current page may be changed while in screen edit
mode. After making the last change, hit return. The screen edit mode is
exited and the current page is redisplayed showing the changes just
made. To edit a different page of memory, use the “N”, “P”, or “Hex-
byte” sub-commands to select the desired page and then “S” to enter the
screen edit mode again. While in screen edit mode, none of the object
code dump sub-commands may be used.

DISK FILES USED BY Sleuth3

 During an operating session, Sleuth3 may use one to four different disk
files. These include: Input file (binary), Output file (binary), Output file
(text), and a Parameter file (text).

 The Input file must be a Coco binary type of file containing machine
language object code for the program to be disassembled or modified.
BASIC programs, Text files, data files, and other non-binary files will
not work. If an attempt is made to use a non-binary input file, the error
message “Bas format!” is usually displayed.

 The Output file produced by the “W” command is another binary file
similar to the input file. Any changes made during the operating session
will be included in this file. If a transfer address has been set, it will be
recorded in the file.

 The Output file produced by the “D” command is a Text file containing
the source code produced by Sleuth3. This file may be immediately
assembled by an appropriate assembler and should produce no errors.
The file may be edited and/or modified as the user desires.

 The Parameter file used by the “G” command is a text file containing
the various operating parameters in effect at the time the file was
produced. The data is stored in the file exactly as it would have been
entered from the keyboard.

The disk error messages produced by Sleuth3, Chngnam3, and XRef3
are of the following form:
 error XXX
where the XXX is one of the numeric codes documented in the OS-9
User’s Manual and Programming Guide.

NAME CHANGER (Chngnam3)

 The Name Changer is essentially a word substitute program. A table of
words and desired substitutes is read into memory and then the file is
read. All the words in the input file are checked against the substitution
table and, if a match is found, the appropriate substitution is made. The
principal use of this is in changing the machine-generated labels
produced by Sleuth3 to standard labels that are more meaningful. Since
Sleuth3 always produces the same label name for the same address, a
standard file of labels may be maintained and used whenever desired.

GETTING STARTED

To start the program, simply insert the disk containing the program
Chngnam3 into the system drive and enter:
Copy /dx/cmds/chgnam3 /dd/cmds/chgnam3

To run the program, just type:
Chgnam3 <oldpath> <newpath> <wordlist>

Operation is entirely automatic with no operator intervention required.

DISK FILES USED BY NAME CHANGER

 Name Changer uses three disk files.

 The first file is the control file (wordlist). This is a text file containing a
table of text substitutions in the following format:

 <delimiter> STRING <delimiter> NEWSTRING <delimiter><return>

Where <delimiter> may be any special character which does not appear
in either the STRING or the NEWSTRING string and must be the same
in all three locations; STRING may not be null, but NEWSTRING may
be null; the total length is limited to 32 characters. Following are
examples:

 /ZD66C/DSKCON/
 .THIS STRING WILL BE DELETED..

Since this file is placed into memory, the diskette containing it may be
removed after it is read.

 The second file is the Input file. This will usually be an assembly source
file produced by Sleuth3; however any text file may be processed,
including data files.

 The third file is the Output file. This is the text file that will receive the
modified text from the Input file.

OPERATING HINTS

 If the message “MEMORY OVERFLOW” appears, too many entries
are present in the control file. To expand Chgnam3's memory capacity,
use the OS-9 memory modifier as the last item on the command line:

Chgnam3 <oldpath> <newpath> <wordlist> #xxk
(xx being the amount of memory requested)

The only limitation on the size of input and output text files which may
be processed is imposed by the size of one disk drive each. Even in this
case, large text files may be processed as smaller sub-files.

 Frequently, in assembly language programming, reference is made to
individual bytes of a multi-byte sequence of code or data. To do this, the
first byte of the sequence is normally assigned a label and successive
bytes are addressed as that label plus an offset (e.g. LABEL+1). Sleuth3
and most other disassemblers have no way of recognizing this
convention and will always assign a separate label to each byte so
referenced.

 When using the Name Changer, it may be desirable, for increased
clarity, to restore the original labeling convention. This is done by
substituting the desired label for the first byte of the sequence and then
substituting the same label plus the appropriate offset for the labels that
the disassembler assigned to the other bytes. A problem arises here,
however, which must be dealt with prior to reassembling the program.

 Most assemblers will not permit the form “LABEL+1” in the label field
of the source program. Consequently, after making the changes
described above, it may be necessary to use a text editor to delete the
equates with the offset labels. Do not delete the equate that defines the
original label. The offset labels are permitted in the operand field since
most assemblers allow and evaluate expressions in that field.

Several examples of using the wodlist file are in the "EXAMPL"
directory on the disk.

CROSS-REFERENCE GENERATOR (XRefs3)

 XRefs3 processes an assembly language source file and produces a
sorted list of labels found in that file, the line number where the label is
defined, and the line numbers of all lines in the program that refer to that
label. Any source file that follows the Motorola source code format may
be processed with this program. Labels are restricted to 8 characters.

GETTING STARTED

 To start the program, simply insert the disk containing the program
XRefs3 into the system drive and enter:
Copy /dx/cmds/XRefs3 /dd/cmds/XRefs3

To run the program, just type:
XRefs3 <infile >outfile

 Entering no output file name will send the output to the screen. An
output disk file contains the cross reference listing, which may be saved
for later reference and/or printed.
 Program operation, with minor exceptions, is entirely automatic.

OPERATING HINTS

If the message “MEMORY OVERFLOW” appears, too many entries are
present in the input file. To expand Xrefs3's memory capacity, use the
OS-9 memory modifier as the last item on the command line:

XRefs3 <infile >outfile #xxk

(xx being the amount of memory requested)

The only limitation on the size of input and output text files which may
be processed is imposed by the size of one diskette each. However, the
input diskette may be removed when the output file name is requested.

ADAPTING Sleuth3, Chngnam3, AND XRef3 TO YOUR SYSTEM

 The first few bytes of the object files of Sleuth3, Chngnam3, and XRef3
contain the information which may be required to adapt them to your
system. The object file editing capabilities of LSEUTH may be used to
perform the modifications, as required. Following are the addresses and
contents of this information:

 Address Contents
 Offset

 0002 Program version number
 0003-4 Serial port (printer) baud rate
 01CA = 110 baud
 00BE = 300 baud
 0057 = 600 baud (default)
 0029 = 1200 baud
 0012 = 2400 baud
 0005 Bits per byte on serial port
 07 = 7 bits/byte
 08 = 8 bits/byte (default)
 0006-9 Disk step rate (drives 0-3)
 00 = 06 millisec.
 01 = 12 millisec.
 02 = 20 millisec.
 03 = 30 millisec.
 000A-B Table start address (default 0000)
 000C-D Table end address (default 1F00 for Sleuth3)

 When modifying this information, be careful not to modify any other of
the contents of Sleuth3, Chngnam3, or XRef3. Also, be sure to keep the
original versions of the programs on the original disk in case you make
an error in modifying them or need them to run on slower disk drives in
the future.

 Sleuth3 does not actually modify memory with the “Q”, “M”, and “T”
commands; rather, it records the changes in a table and applies them
when the object program is written with the “W” command or
disassembled with the “V” or “T” command. Thus, before the change
will be effective, the program must be re-executed from the new object
file.

 The source files processed by Coco Sleuth3 contain a carriage return
following each line of text. This is also the format required by most of
the current Coco assemblers and editors. If your assembler or editor
requires a different format, it should be very simple to write a BASIC
program to reformat the file produced by Sleuth3 to be compatible with
your assembler or editor, or vice versa.

 If your printer will not work properly with Sleuth3, contact CSC. There
is a tremendous variation among printers which may be attached to the
Coco. A standard printer driver is provided, but it may be possible to
easily modify it to drive your printer. Luckily, a printer is not essential to
the use of Sleuth3.

Coco Sleuth3 COMMAND SUMMARY

OPERATIONAL COMMANDS

 D--Perform full disassembly
 F--Exit Coco Sleuth3
 Q--Edit object code dump
 M--Query/modify object code
 T--Fill address range with hex value
 U--List directory of a mounted diskette
 V--View object code and perform absolute disassembly
 W--Write new object code file
 Y--Find hex string in object code

ADDRESS RANGE COMMANDS

 A--Classify as FDB
 C--Classify as FCC
 H--Classify as FCB
 I--Classify as Instruction
 J--Classify as Instruction + ASCII
 K--Classify as Killed or Ignored
 R--Classify as RMB

MODE CHANGE COMMANDS

 B--Flip cross-assembler switch
 E--Flip separate-label switch
 P--Flip position-independent switch
 Z--Select CPU mode

MISCELLANIOUS COMMANDS

 G--Specify auxiliary input/output file
 L--List control information

 N--Set new disassembly range
 O--Set offset load value
 S--Specify input file name
 X--Set transfer address

	Coco Sleuth3
	Copyright Notice
	Limited Warranty Statement
	Problems and Improvements
	Table Of Contents
	Coco Sleuth3--An Overview
	Sleuth3--A Disassembler/File Editor
	GETTING STARTED
	GENERAL NOTES ON OPERATION OF Sleuth3
	Sleuth3 COMMANDS
	ADDRESS RANGE COMMANDS
	A--set FDB Address Range
	C--set FCC Address Range
	H--set FCB Address Range
	I--set INSTRUCTION Address Range
	J--set INSTRUCTION & ASCII Range
	K--set IGNORED Address Range
	R--set RMB Address Range

	MODE COMMANDS
	B--Flip Cross-Assembler Switch
	E--Flip Separate Label Switch
	P--Flip 6809 Position-Independence Switch
	Z--set Processor Type

	OPERATIONAL COMMANDS
	D--Disassemble Program
	F--Exit Coco Sleuth3
	M--Examine and/or Change Program Code
	Q--Object Code Display (Dump)
	T--Fill Program Code with a Specified Byte
	U--Display Directory of a Mounted Diskette
	V--View Object Code and Perform Absolute Disassembly
	W--Write Modified Binary File to Disk
	Y--Find Hexadecimal String in Program Code

	MISCELLANEOUS COMMANDS
	G--Specify Auxiliary Parameter File (Input or Output)
	L--List Current Control Information
	N--Set New Disassembly Range
	O--Set Offset Load Value
	S--Specify New Input File and do Partial Restart
	X--Specify New Transfer Address

	OBJECT CODE DUMP AND SCREEN EDIT FUNCTIONS
	SUB-COMMANDS
	N--Display Next Page of Memory or File
	P--Display Previous Page of Memory or File
	(Hex Byte)--Display a Specified Page of Memory or File
	Q--Quit and Return to Main Command Mode
	S--Full Screen Edit Mode

	DISK FILES USED BY Sleuth3
	NAME CHANGER (Chngnam3)
	GETTING STARTED
	DISK FILES USED BY NAME CHANGER
	OPERATING HINTS

	CROSS-REFERENCE GENERATOR (XRefs3)
	GETTING STARTED
	OPERATING HINTS

	ADAPTING Sleuth3, Chngnam3, AND XRef3 TO YOUR SYSTEM
	Coco Sleuth3 COMMAND SUMMARY
	OPERATIONAL COMMANDS
	ADDRESS RANGE COMMANDS
	MODE CHANGE COMMANDS
	MISCELLANIOUS COMMANDS

